
Lab 7

Stacks
Assignment 3

October 20th, 2010
James Marshall

10/20/10 jcmarsh@gwmail.gwu.edu 2

Previous Lab

● Command Line Arguments
● Recursion and CLA example

10/20/10 jcmarsh@gwmail.gwu.edu 3

Motivation

● Stacks
● Call Stack (remember our recursion examples)
● Browser “back” button
● Matching: () { } []
● Forth (popular with embedded systems)

10/20/10 jcmarsh@gwmail.gwu.edu 4

Programing Assignment 3

● Easier than the last 2!
● But longer...
● Still linked lists!

10/20/10 jcmarsh@gwmail.gwu.edu 5

Input

● Messages
● “Note that you are guaranteed that each

message in messagesfile.txt is more recent
(has later date) than all the messages before
it in that file.”

● Queries

10/20/10 jcmarsh@gwmail.gwu.edu 6

Requirements - Queries

● LIST-MESSAGES-BY-DATE
● LIST-MESSAGES-FROM email-address-string
● DELETE-MOST-RECENT-MESSAGE
● DISPLAY k

10/20/10 jcmarsh@gwmail.gwu.edu 7

Queries imply Stack

● Input ordered by date.
● DELETE-MOST-RECENT-MESSAGE

● pop!

● LIST-MESSAGES-BY-DATE
● Easy if already ordered

10/20/10 jcmarsh@gwmail.gwu.edu 8

Other queries

● LIST-MESSAGES-FROM email-address-string
● Doesn't fit with stack, but still do-able

● DISPLAY k
● Again, doesn't scream stack, but not problem

10/20/10 jcmarsh@gwmail.gwu.edu 9

Stack Review

● LIFO
● Last In – First Out

● Two main operations
● Push()
● Pop()

● We will need extra
● Peek()... or a way to traverse the stack
● For the “other” queries

10/20/10 jcmarsh@gwmail.gwu.edu 10

Queues (briefly)

● Similar to Stacks
● FIFO

● First In – First Out

● Take from the “front” - like a stack
● Add to the “back” - unlike a stack

10/20/10 jcmarsh@gwmail.gwu.edu 11

Stack Implementation

● You already know how!
● Linked List! Huzzah!

● Constrained (simpler)
● No arbitrary insertions

● Remember, input is already date ordered
● No sorting (such as insertion sort)

10/20/10 jcmarsh@gwmail.gwu.edu 12

Implementation Cont.

struct node {

// Put data to store here

struct node *next;

};

// new was allocated previously

void push(node ** top, node * new){

new>next = *top;

*top = new;

}

10/20/10 jcmarsh@gwmail.gwu.edu 13

Implementation Cont.

node* pop(node ** top) {

node* temp = *top;

*top = (*top)>next;

// Don't forget to deallocate temp

// elsewhere

return temp;

}

10/20/10 jcmarsh@gwmail.gwu.edu 14

Other Slides

● Mira's
● Show how to implement a char stack

● Bragg's
● A practical example on paren matching

● But what do you need in your stack?

10/20/10 jcmarsh@gwmail.gwu.edu 15

Read Message Data

FROM: ayoussef (<= 50 chars)

DATE: 09-15-2005 (MM-DD-YYYY)

SUBJECT: Do your homework (<= 60 chars)

BODY:

My advice to you is to start to do your
programming assignment 1 today. -AY

########## (Always 10 '#'s)

10/20/10 jcmarsh@gwmail.gwu.edu 16

I'm sorry.

● Parsing strings is a pain
● But, the input is very well formatted
● Not too bad, just test early

10/20/10 jcmarsh@gwmail.gwu.edu 17

Remember File I/O?

● Use fopen and fclose

FILE *fp;

fp = fopen(“input.txt”, “r”);

● Then use fprintf and fscanf

int lenght;

fscanf(fp, “%d”, &length);

● Remember, when “%s” you need to supply a
char* that is long enough

10/20/10 jcmarsh@gwmail.gwu.edu 18

Problems

● Can't hard-code filename
● Command line args... last lab

● fscanf
● %s : “Matches a sequence of bytes that are not

white-space characters.”
– http://opengroup.org/onlinepubs/007908775/xsh/fscanf.

html

● Should work, stops on spaces and newlines
● What about MM-DD-YYYY?
● What about body?

10/20/10 jcmarsh@gwmail.gwu.edu 19

strtok

● Not necessary, but may be easier

char* token, input, delimiter;

// Get first token

token = strtok(input, delimiter);

// Get next token

token = strtok(null, delimiter);

10/20/10 jcmarsh@gwmail.gwu.edu 20

What To Do Now

● Start writing code.
● Implement a stack
● Read file names from command line args
● Push() and Pop(), test!
● Try the example input files provided
● Implement the queries

● But most importantly.....

10/20/10 jcmarsh@gwmail.gwu.edu 21

Start NOW!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

