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Previous Lab

● Command Line Arguments
● Recursion and CLA example
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Motivation

● Stacks
● Call Stack (remember our recursion examples)
● Browser “back” button
● Matching: ( ) { } [ ]
● Forth (popular with embedded systems)
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Programing Assignment 3

● Easier than the last 2!
● But longer...
● Still linked lists!
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Input

● Messages
● “Note that you are guaranteed that each 

message in messagesfile.txt is more recent 
(has later date) than all the messages before 
it in that file.”

● Queries
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Requirements - Queries

● LIST-MESSAGES-BY-DATE
● LIST-MESSAGES-FROM email-address-string
● DELETE-MOST-RECENT-MESSAGE
● DISPLAY k
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Queries imply Stack

● Input ordered by date.
● DELETE-MOST-RECENT-MESSAGE

● pop!

● LIST-MESSAGES-BY-DATE
● Easy if already ordered
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Other queries

● LIST-MESSAGES-FROM email-address-string
● Doesn't fit with stack, but still do-able

● DISPLAY k
● Again, doesn't scream stack, but not problem
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Stack Review

● LIFO
● Last In – First Out

● Two main operations
● Push()
● Pop()

● We will need extra
● Peek()... or a way to traverse the stack
● For the “other” queries
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Queues (briefly)

● Similar to Stacks
● FIFO

● First In – First Out 

● Take from the “front” - like a stack
● Add to the “back” - unlike a stack
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Stack Implementation

● You already know how!
● Linked List! Huzzah!

● Constrained (simpler)
● No arbitrary insertions

● Remember, input is already date ordered
● No sorting (such as insertion sort)
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Implementation Cont.

struct node {

// Put data to store here

struct node *next;

};

  

// new was allocated previously

void push(node ** top, node * new){

new>next = *top;

*top = new;

}
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Implementation Cont.

node* pop(node ** top) {

node* temp = *top;

*top = (*top)>next;

// Don't forget to deallocate temp

// elsewhere

return temp;

}
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Other Slides

● Mira's
● Show how to implement a char stack

● Bragg's
● A practical example on paren matching

● But what do you need in your stack?
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Read Message Data

FROM: ayoussef (<= 50 chars)

DATE: 09-15-2005  (MM-DD-YYYY)

SUBJECT: Do your homework (<= 60 chars)

BODY:

My advice to you is to start to do your 
programming assignment 1 today. -AY

########## (Always 10 '#'s)
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I'm sorry.

● Parsing strings is a pain
● But, the input is very well formatted
● Not too bad, just test early
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Remember File I/O?

● Use fopen and fclose

FILE *fp;

fp = fopen(“input.txt”, “r”);

● Then use fprintf and fscanf

int lenght;

fscanf(fp, “%d”, &length);

● Remember, when “%s” you need to supply a 
char* that is long enough
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Problems

● Can't hard-code filename
● Command line args... last lab

● fscanf 
● %s : “Matches a sequence of bytes that are not 

white-space characters.”
– http://opengroup.org/onlinepubs/007908775/xsh/fscanf.

html

● Should work, stops on spaces and newlines
● What about MM-DD-YYYY?
● What about body?
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strtok

● Not necessary, but may be easier

char* token, input, delimiter;

// Get first token

token = strtok(input, delimiter);

// Get next token

token = strtok(null, delimiter);
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What To Do Now

● Start writing code.
● Implement a stack
● Read file names from command line args
● Push() and Pop(), test!
● Try the example input files provided
● Implement the queries

● But most importantly.....
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Start NOW!
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